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Abstract

This paper describes the EHWPack development
system, a tool that performs the evolutionary
synthesis of electronic circuits, using the SPICE
simulator and the Field Programmable Transistor
Array hardware (FPTA) developed at JPL.
EHWPack integrates free and commercial
software packages such as PGAPack for the
evolutionary algorithm, Spice for the circuit
evaluation, Tcl-Tk for the graphic interface, and
LabView for the hardware evaluation. The paper
investigates the performance of the tool in two
typical problems of EHW: evolutionary
synthesis of a Gaussian computational function
and the evolution of a band-pass filter.

1 INTRODUCTION

This paper presents the tool EHWPack, a multi-tasking
parallel software package targeted for Evolvable
Hardware (EHW) experiments. EHW involves the
investigation of the automatic synthesis of electronic
circuits through evolutionary systems (Thompson, 1998).
This field of research constitutes a new approach for
automatic circuit design, where the process of circuit
conception is interpreted as a search task. The use of
evolutionary systems as a search technique provides an
efficient way to sample the large search space associated
with problems of electronic circuit synthesis. EHW can
afford the synthesis of novel circuits that are comparable
to the human designed ones in terms of such aspects as
size, noise, power consumption and others (Koza, 1998)
(Zebulum, 1999). Nevertheless, EHW experiments need
powerful computer resources and evolution-oriented
programmable devices.

The large search space associated with EHW applications
requires the sampling of more individuals compared to
ordinary applications of evolutionary computation.
Extrinsic EHW, where circuit simulators are used to
evaluate electronic circuits, needs non-conventional

computer resources, such as multi-computers or
multiprocessors to speed up the experiments. Circuit
simulation is a very time consuming process, particularly
in the case of analog circuits. For example, Bennett et al.
built and used a parallel cluster of 1,000 Pentium
processors for the evolutionary design of analog filters
and amplifiers (Bennett, 1999).

Instead of using simulators, programmable chips (Stoica,
1999a) can be used to assess each circuit synthesized by
the evolutionary algorithm (intrinsic approach). In this
case, the circuits are downloaded into the reconfigurable
chip and their performance is measured based on their
actual behavior. Besides being used as a platform for
evolution, these reconfigurable chips are important to
validate solutions evolved in simulation. It may be noted,
however, that commercially programmable chips are not
particularly suitable for evolutionary applications
(Zebulum, 2000). Evolution-oriented programmable
devices must be included in the experimental setup.

For several reasons (including mismatches between
models and physical HW, limitations of the simulator and
testing system, etc.) circuits evolved in SW may not
perform the same way when implemented in HW, and
vice-versa. This portability problem limits the
applicability of SW evolved solutions, and on the other
hand, prevents the analysis (in SW) of solutions evolved
in HW.  A third approach to EHW called mixtrinsic EHW
(MEHW)  was presented in Stoica, 2000. In MEHW
evolution takes place with hybrid populations in which
some individuals are evaluated intrinsically and some
extrinsically, within the same generation or in consecutive
ones.

In order to handle the above issues, the EHWPack tool
has been developed. The EHWPack is a distributed
parallel software-hardware environment for evolutionary
circuit design. It runs on the HP Exemplar Caltech
parallel supercomputer and is remotely controlled from a
local workstation. It has been developed to facilitate
experiments, both in simulated as well as hardware
evolution, using SPICE circuit simulator and a Field
Programmable Transistors Array (FPTA) respectively



(Stoica, 1999a). The tool is used for the evolutionary
synthesis, optimization and on-line adaptation
(Keymeulen, 2000) of electronic circuits in extrinsic,
intrinsic and mixtrinsic mode. Furthermore, it has also
been used as a test-bed for new architectures of
reconfigurable hardware (Stoica 1999b) and nano-
electronic devices (Stoica, 1999c).

Although a variety of evolution-based software
environments have successfully been developed for
evolutionary designs (Levine, 1994) (Heitkötter, 1997)
(van Lent, 1999) (Wall, 1999) (Bennett, 1999), a tool like
EHWPack was needed due to a number of factors: (a) the
currently available evolutionary software packages
implement general-purpose genetic algorithms running on
various workstations and under different operating
systems, but a dedicated genetic algorithm is needed for
circuit design; (b) public domain software is available for
genetic algorithm, circuit simulation, graphical interface,
PC-board control and network communication, however
no software integrates all these components into a single
environment; (c) the genetic algorithm for circuit design
using both software simulation and hardware
implementation must be evaluated on a single platform;
(d) the tool must be user friendly and transparent, such
that experimentalists  (not necessarily experts in software
simulation on supercomputer) located at different sites
can use it; and finally, (e) the evolutionary design of
portable circuits can only be achieved by integrating
results from software simulation and hardware execution
in the same experimental environment (Stoica, 2000).

The paper is organized as follows: Section 2 describes the
EHWpack environment. It starts with a general view of
the system, followed by a description of its window
interface and its implementation on the supercomputer.
Section 3 presents an analysis of the EHWPack
performance in terms of speed to evolve circuits. It begins
with a short overview of the FPTA architecture, and
shows time statistics associated with the synthesis of the
Gaussian and a band-pass filter tuned to the AM band.
The section concludes with a comparison of the intrinsic
and extrinsic evolution and an illustration of the circuits
achieved by EHWPack for the Gaussian and band path
filter. The conclusions are discussed in section 4.

2 EHWPACK ENVIRONMENT

EHWPack implements the three main steps of an
evolutionary design of electronic circuits. In the first step,
a population of chromosomes is randomly generated and
the chromosomes are converted into circuit models (for
extrinsic EHW) or control bit strings, downloaded to
programmable hardware (intrinsic EHW). In the second
step, circuit responses are compared against specifications
of a target response, and individuals are ranked based on
how close they come to satisfying it. In the third step,
preparing for a new iteration loop, a new population of
individuals is generated from the pool of best individuals
in the previous generation. Some individuals are token as
they were and some are modified by genetic operators,
such as chromosome crossover and mutation. The process
is repeated for many generations, which results in
increasingly better individuals. The process is usually
stopped after a number of generations, or when the
closeness to the target response has been reached to a
sufficient degree. One or several solutions may be found
among the individuals of the last generation.

In its current implementation, the tool uses the public
domain Parallel Genetic Algorithm package, PGAPack,
(Levine, 1994) a public domain version of SPICE 3F5 as
circuit simulator and a FPTA (Stoica, 1999a) evolvable
hardware test bed built around LabView (figure 1). The
FPTA is an array of transistors interconnected by
programmable switches and will be discussed in details
later. An interface code links the GA with the circuit
simulator and with the hardware where potential designs
are evaluated, while a graphic user interface (GUI) allows
easy problem formulation.

At each generation, the genetic algorithm (GA) produces
a new population of binary chromosomes, which get
converted into voltages in netlists that describe candidate
circuit designs, and into configuration bits for the FPTA
devices. Netlists are further simulated by SPICE while
configuration bits are downloaded into the hardware
device by LabView. The output signals are compared
with the target and the fitness is sent back to the GA. The
process continues until the output response is close to
target output.

Figure 1 - EHWPack Environment
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2.1 INTERFACE

A graphical interface remotely controls the evolutionary
process running on the supercomputer and the
reconfigurable hardware. The user specifies on his local

workstation the parameters of the evolutionary design
through a series of windows. After calling the EHWPack
tool from the user local workstation, the main window,
shown in figure 2, appears in the user’s screen. By
clicking the buttons on the main window, the user will be
connected to a series of sub-windows to graphically set up
the PGAPack parameters, SPICE parameters, and
supercomputer parameters, before starting the execution

on the supercomputer or the reconfigurable hardware. In
the next paragraphs we review some of the windows.

The first window obtained by clicking on Parameter to
Gene Mapping button, allows the user to specify the high
and low values for the gene associated with a substitute
string in the SPICE netlist. For example, the genes are
associated with resistance strings in the netlist, which
represent the behavior of opened and closed switches. The
user has also the possibility to include or take genes away.
The netlist should be changed in accordance with the
substitute strings added or deleted.

By clicking on the Optimizer Parameters button, the
interface runs through five windows where the user
selects the optimization method (Michalewicz, 1999)
(genetic algorithm in the current version, Tabu search
(Glover 1997) and simulated annealing in later versions),
the fitness function (mean square error or control points),
set up the parameters of the GA, the parameters of the
SPICE simulator and the names of the result text files
where the EHWpack output is saved. We show in figure 3
the parameters of the genetic algorithm.

Once the user has entered the optimizer parameters, he
saves all the settings in a file by clicking the Save Input
button. Finally, the execution of the EHWPack is
launched in interactive mode (Run Simulation in Foreground)
or in batch mode (Run Simulation in Bacground). The
execution in foreground runs on one processor and is used
for debugging. When the execution runs in background,
the user must specify the number of processors and the
estimated time of the job. When the job has started on the
supercomputer or on the reconfigurable hardware, a
window pops up showing the intermediate fitness of the
best individual. In the current stage of the EHWPack, the
outcome of the experiment is a text file that can be read
by other visual tools, not integrated into the package.

2.2 IMPLEMENTATION

The EHWPack was implemented on the HP Exemplar
shared-memory supercomputer at the California Institute
of Technology with 256 CPUs and 64 GB of memory.
The exemplar is composed of 16 nodes, each node having
16 processors as shown in figure 4. One node, the single-
node system sub-complex, is dedicated to the users' login
sessions and compilation jobs. All the other nodes are

Figure 3 - EHWPack Interface: GA parameters

Figure 2 - EHWPack Interface Main Window



reserved for batch or interactive jobs requiring input-
output interface with the user during execution.

Figure 4. - Software and Hardware Implementation

The parallel programming model used by EHWPack is
the one implemented by the PGAPack. It is a message
passing model, in particular a Single Program Multiple
Data (SPMD) model using the Message Passing Interface
(MPI) standard implemented by the Neptune software
libraries. The EHWPack parallel implementation uses a
master/slave algorithm, in which one process, the master,
executes all steps of the GA except the function
evaluations (SPICE simulation or on-chip evaluation).
The function evaluations are executed by slave processes.
The master is running on one processor of the HP
exemplar and the slaves are running on the other
processors allocated for the job or on the FPTA hardware
through an internet communication.

The hardware configuration is a board mounted with four
FPTAs. The board is controlled by National Instruments
data acquisition hardware and software (LabView). The
LabView Software implements a TCP/IP client-server

system where the server is the LabView and the master
processor running on neptune is the client. LabView
receives the configuration bits from the master and returns
the sampling data of the output responses back to the
master.

The graphical display is executed on a local UNIX
workstation through a Xwindows interface.

3 EXPERIMENTS/PERFORMANCE
This section presents an analysis of the EHWPack
performance in terms of speed of circuit evolution. We
start by reviewing the basic features of the architecture of
the FPTA.

3.1 FPTA

The FPTA cell is an array of transistors interconnected by
programmable switches. The status of the switches (ON
or OFF) determines a circuit topology and consequently a
specific response. Thus, the topology can be considered as
a function of switch states, and can be represented by a
binary sequence, such as “1011…”, where by convention
one can assign ‘1’ to a switch turned ON and ‘0’ to a
switch turned OFF. Figure 5 illustrates the schematic of
the FPTA cell consisting of 8 transistors and 24
programmable switches.

In this implementation, transistors P1-P4 are PMOS and
N5-N8 are NMOS, and the switch-based connections are
in sufficient number to allow a majority of meaningful
topologies for the given transistor arrangements, and yet
less than the total number of possible connections. To
offer sufficient flexibility, the cell has all transistor
terminals connected via switches to expansion terminals
which allows the implementation of bigger circuits by
cascading FPTA cells.

Figure 5 – Schematic of an FPTA cell
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The FPTA cell was manufactured using 0.5 micron
CMOS technology. The chip allowed us to use circuits
obtained through evolution in simulations and validate
them by downloading and evaluating their performance in
hardware.

3.2 SPEED ANALYSIS

The objective of this investigation is to assess the
performance of the tool in two typical problems of EHW:
the evolutionary synthesis of a Gaussian computational
function (Stoica, 1999b) and the evolution of a band-pass
filter tuned to the AM band. The fitness value is the mean
square error between the desired DC/AC signals and the
DC/AC signals obtained by the circuit. We investigate the
impact of varying the number of FPTA cells and the
number of processors in the elapsed time.

We start by describing extrinsic EHW experiments, where
the SPICE simulator is used to evaluate the circuit
performance. In this particular case a netlist file can be
selected by the user from the Graphical User Interface of
EHWPack.

Table 1 shows time statistics associated with the synthesis
of the Gaussian. We compare the tool speed when using
1, 16, 32, 64 and 128 processors of the supercomputer.
We also vary the number of FPTA cells used in the
netlist: 1, 2 and 4 cells.

# Cells Pop.
x

Gen.

#Proc Elapsed
Time
(sec)

Norm.
Time
(msec)

#Trans

1 407 81.4 8

16 56 11.2 8

32 46 9.2 8

64 49 9.8 8

1

50

x

200

(25) 128 63 12.6 8

1 5860 146.5 16

16 491 12.3 16

32 321 8.0 16

64 240 6.0 16

2

400

x

200

(200) 128 222 5.6 16

1 2971 297.1 32

16 288 28.8 32

32 184 18.4 32

64 146 14.6 32

4

100

x

200

(50) 128 154 15.4 32

Table 1 – EHWPack performance in the evolution of a
Gaussian circuit . Pop is the population size, Gen is the
number of generations; #Proc stands for the number of
processors; Norm. Time is the normalized time; and
#Trans gives the number of transistors in the netlist.

The table 1 shown above provides the following
information: number of FPTA cells; number of
processors; population size; number of generations;
elapsed time; normalized time; and the number of
transistors in the SPICE netlist. The elapsed time is the
total time taken to run the experiment. The normalized
time is the elapsed time divided by the number of
individuals evaluated (half of the product population x
generations shown in the above table, since we replace
only 50% of the population at each generation). The
number of individuals evaluated per generation is given
within parenthesis in the second column. As shown in the
table, we used different population sizes in the
experiments in order to assess the influence of this
parameter in the performance. As expected, the
normalized time decreases as we increase the number of
processors. We can further observe that, as we increase
the number of FPTA cells and, as a consequence, the
number of transistors in the netlist, the normalized time
increases as well. Finally, the fitness of the best circuit
using 1,2 or 4 cells and running on 1, 16 to 128 processors
are the same.

It is interesting to observe that for small populations (50
individuals in the single cell experiments), increasing the
number of processors improves the speed only to a certain
extent: for more than 32 processors, the communication
overhead produces an increase in the time for evolution.
This stems from the fact that using the master/slaves
algorithm only 25 individuals are evaluated in parallel per
generation. In order to fully explore the parallelism, large
populations should be used, as in the experiment with two
cells (400 individuals). In this case, 128 circuits can be
evaluated in parallel on 128 processors. We can see from
Table 1 that, for more than 32 processors, the time for
evolution in the two-cell experiment is smaller than the
one observed in the single-cell experiment. For maximum
efficiency, we should use the number of individuals
evaluated at each generation equal to the number of
processors used.

Table 2 is analogous to Table 1, displaying the evolution
time for the synthesis of a band-pass filter. While the
Gaussian circuit requires a DC transfer analysis, filters
require the use of the frequency domain analysis of the
SPICE simulator.



# Cells Pop
x

Gen

#Proc Elapsed
Time
(sec)

Norm.
Time
(msec)

#Trans

1 1445 72.3 8

16 144 7.2 8

32 101 5.1 8

64 72 3.6 8

1

200

x

200

(100) 128 79 4.0 8

1 2034 101.7 16

16 214 10.7 16

32 145 7.3 16

64 115 5.8 16

2

200

x

200

(100) 128 94 4.7 16

1 4895 244.8 32

16 402 20.1 32

32 250 12.5 32

64 146 7.3 32

4

200

x

200

(100) 128 119 6.0 32

Table 2 – EHWPack performance in the evolution of a
bandpass filter.

In the case of the filter experiment, we kept the number of
evaluated individuals constant, so that we can clearly
observe the increase in evolution time as we include more
cells in the netlist. In this case also the fitness of the best
circuit using 1, 2 or 4 cells and running on 1, 16 to 128
processors are the same. If we compare the statistics
shown in Tables 1 and 2, it can be observed that the filter
experiment consumes less time than the Gaussian
experiment. This is consistent with the fact that the AC
analysis is less time consuming than the DC analysis.

Further, we compare the statistics shown for the extrinsic
evolution in Table 1 with the ones measured in an
intrinsic experiment, where two FPTA cells were used as
a hardware evolution platform. A total of 20 individuals
have been evaluated along 200 generations. The elapsed
time was 272 seconds. The total time spent in the TCP/IP
connection between the supercomputer and the PC was 5
seconds. The computation time spent on the PC is 180
seconds and on the supercomputer is 87 seconds. We
should mention that most of the evaluation time on the PC
is used by LabView to download the configuration bits
into the chip and to acquire the data from the chip (153
seconds). The time needed to obtain a DC transfer
analysis of the circuit is reduced to 27 seconds. This value
can be normalized, dividing it by the number of
individuals evaluated (4000), giving 6.75 ms. This
number is one order of magnitude less than that obtained
for the simulated experiments with 2 FPTA cells and
using only one processor, and it is equivalent to the time
observed when using 128 processors. Another advantage
of hardware evolution is that the elapsed time does not
increase with the number of cells. We are currently

working on an enhanced version of the chip that will
integrate 36 FPTA cells. The chip will be mounted on a
dedicated board with processor, memory and
analog/digital converter to accelerate the chip
reconfiguration and the data acquisition.

Finally, we illustrate two circuits achieved by EHWPack
in these experiments. Figure 6A depicts the schematic of a
band-pass filter evolved in the extrinsic experiment, using
two cells. Figure 6B shows its frequency response. Figure
7A depicts the schematic of a Gaussian circuit evolved in
hardware, using one FPTA cell. Figure 7B plots its DC
transfer function.

4 CONCLUSIONS

A parallel evolutionary software/hardware environment,
EHWPack, was developed around PGAPack, SPICE as a
simulator, and FPTA as reconfigurable VLSI chip to
facilitate experiments in simulated and hardware
evolution on a single platform. It allows experimentalists
located at different sites, to design, optimize and test
circuits using evolutionary algorithms in a user friendly,
transparent and expeditious manner. Using the EHWPack,
we were able to synthesize a Gaussian computational
function and a band-pass filter tuned to the AM band in
less than 4 minutes using 1, 2 or 4 FPTA cells. The same
job took 1 hour 30 minutes in simulation on a 1 processor.
The experiments confirm that, to obtain maximum
efficiency, the number of processors should be equal to
the number of individuals evaluated at each generation.
Finally, we observe that the time needed to evaluate one
individual using the reconfigurable hardware (6.75 ms) is
as fast as the time observed when using 128 processors
and twenty times (2 FPTAs: 146.5 ms) to fifty times (4
FPTAs: 297.1 ms) faster that the SPICE simulator
running on one processor.
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Figure 6: (A) – Schematic of the band-pass filter evolved in simulation using EHWPack;  (B)- Frequency response

Figure 7 - (A) – Schematic of the Gaussian circuit evolved in hardware using EHWPack;  (B)- DC transfer response
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